1. Hu, D.; Ordomsky, V. V; Khodakov, A. Y. Major Routes in the Photocatalytic Methane Conversion into Chemicals and Fuels under Mild Conditions. Appl. Catal. B Environ. 2021, 286 (January), 119913. https://doi.org/10.1016/j.apcatb.2021.119913.




2. Kumar, A.; Choudhary, P.; Kumar, A.; Camargo, P. H. C.; Krishnan, V. Recent Advances in Plasmonic Photocatalysis Based on TiO2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. Small 2022, 18 (1). https://doi.org/10.1002/smll.202101638.

3. Mou, T.; Quiroz, J.; Camargo, P. H. C.; Wang, B. Localized Orbital Excitation Drives Bond Formation in Plasmonic Catalysis. ACS Appl. Mater. Interfaces 2021, 13 (50), 60115–60124. https://doi.org/10.1021/acsami.1c21607.

4. Quiroz, J.; de Oliveira, P. F. M.; Shetty, S.; Oropeza, F. E.; de la Peña O’Shea, V. A.; Rodrigues, L. C. V.; de S. Rodrigues, M. P.; Torresi, R. M.; Emmerling, F.; Camargo, P. H. C. Bringing Earth-Abundant Plasmonic Catalysis to Light: Gram-Scale Mechanochemical Synthesis and Tuning of Activity by Dual Excitation of Antenna and Reactor Sites. ACS Sustain. Chem. Eng. 2021, 9 (29), 9750–9760. https://doi.org/10.1021/acssuschemeng.1c02063.

5. da Silva, A. G. M.; Rodrigues, T. S.; Wang, J.; Camargo, P. H. C. Plasmonic Catalysis with Designer Nanoparticles. Chem. Commun. 2022, 58 (13), 2055–2074. https://doi.org/10.1039/D1CC03779J.